Pierre Robin Sequence Treatment & Management

Updated: Sep 01, 2020
  • Author: Marie M Tolarova, MD, PhD, DSc; Chief Editor: Ravindhra G Elluru, MD, PhD  more...
  • Print

Approach Considerations

The newborn affected with Pierre Robin sequence (PRS) is of serious concern to neonatologists, pediatricians, and other health care providers.

PRS has three essential components:

  • Micrognathia/retrognathia
  • Relative glossoptosis

Immediately after delivery, because of the micrognathia and, therefore, relative glossoptosis, many children have airway distress. This may necessitate emergency treatment. Because the body will always prioritize breathing over eating, many infants have difficulty in achieving adequate caloric intake. A cleft palate further adds to the feeding difficulties.


Neonatal Care

The primary concern in airway compromise is its life-threatening aspect. Most neonates with PRS have an isolated defect that is not part of a syndrome, for which the airway and feeding complications are usually greater. The great majority of neonates can be treated in the prone position (face down). Devices or procedures such as oral airways, palatal prostheses, continuous positive airway pressure or endotracheal intubation, mechanical ventilation, and tracheostomy can be avoided.

These neonates also need to be fed in a prone position, but they can be fed by mouth. Again, very few infants need long-term gavage feeding tubes or other devices. Multidisciplinary care that includes a neonatologist, a neonatal nurse specialist, members of the craniofacial team, and the parents is the best approach in the complex care of neonates affected with PRS and Robin complexes.

The vast majority of neonates with nonsyndromic PRS, those who are breathing without assistance and orally feeding while prone, can be discharged home after a few days. It is expected that the mandible will eventually grow and, thus, that the severe airway obstruction and feeding issues will decrease. Feeding and speech assessments continue to be needed, and breathing capacity must be monitored. Eventually, the cleft palate must be closed, and long-term orthodontic care is required; however, some neonates have much more severe immediate or long-term medical problems.


Postneonatal Care


Secondary to the micrognathia/retrognathia, airway obstruction may be mild or severe. Severe obstruction may require immediate intervention with a very difficult intubation. In many infants, airway difficulties may seem mild at birth but progress during the first 4-8 weeks. This may be because a newborn's respiratory needs are relatively small. As an infant grows, the requirements increase, making the obstruction more severe.

Mild obstruction can normally be handled in a very conservative manner with positional changes. Obstruction of the airway results from a small mandible and a normal-sized tongue. Putting a baby in the prone position causes gravity to pull the tongue forward and results in a larger airway passage. Infants with a nonsyndromic etiology will often outgrow this type of obstruction.

If the obstruction does not resolve through positional changes, many practitioners advocate use of the nasopharyngeal airway. The nasopharyngeal airway bypasses the oral pharynx and the obstruction caused by the relative glossoptosis. In the neonatal intensive care unit (ICU), this can be a very effective temporary form of management of the airway obstruction. Most centers do not feel comfortable sending patients home with a nasopharyngeal airway, because dislodgment can result in an acute airway obstruction.

In patients who consistently maintain CO2 levels above 50, a surgical procedure is appropriate. The following three surgical procedures are used to treat PRS [39] :

The Tübingen palatal plate (TPP) has been advocated by some as a less invasive alternative in infants with PRS and upper-airway obstruction. [40]

Tongue-lip adhesion/glossopexy

In tongue-lip adhesion/glossopexy, the tongue is sutured to the lower lip, thereby pulling the tongue forward and providing a larger airway. Later, presumably after the child has demonstrated catchup growth, this bond between the tongue and lip is separated. This results in a very mild cosmetic deformity to the lip and tongue.

With a glossopexy, many surgeons try to pull the base of the tongue forward by attaching it to the mandible. Because the mandible is relatively soft, placing a suture that permanently holds the base of the tongue forward is very difficult; consequently, the tongue-lip adhesion/glossopexy has been the subject of some controversy. Nevertheless, it does have its advocates among maxillofacial surgeons.


A tracheostomy tube effectively bypasses the obstruction in the oral pharynx and hypopharynx. When and if the infant's airway obstruction is resolved, the tracheostomy tube can be removed.

Unfortunately, tracheostomy tubes require close monitoring. If the tracheostomy tube becomes occluded or dislodged, the patient could have an acute respiratory arrest. However, a tracheostomy tube rarely remains in place less than a year after being placed in a newborn. Despite the hardship for the family of taking care of a tracheostomy tube, methods of teaching families how to care for it are well established. Tracheostomy remains a criterion standard for children with severe airway obstruction.

Distraction osteogenesis

Distraction osteogenesis, a more recently developed technique for treating airway obstruction in PRS, [41]  was popularized by Sidman, who had the world's widest experience in treating patients with PRS with distraction osteogenesis. [42]

Many centers have acquired expertise in this area. In this technique, the mandible is cut near the angle of the mandible on both sides. A mechanical device distracts the two portions of the mandible approximately 1.5-2 mm a day. As the portions of the mandible are separated, new bone is formed, and the mandible gradually elongates over a period of 2-3 weeks. Distraction can be performed in the newborn to prevent a tracheostomy or can be performed later to remove a tracheostomy tube. (See the images below.)

Child with Pierre Robin sequence before distractio Child with Pierre Robin sequence before distraction osteogenesis.
Distraction osteogenesis is completed, and bone is Distraction osteogenesis is completed, and bone is consolidating.

Because this technique was popularized only during the past couple of decades, the long-term sequelae on mandibular growth and tooth development have not been fully defined; nevertheless, good results have been reported, [43]  and distraction osteogenesis is being performed with increasing frequency. There is also growing awareness of potential complications, such as facial nerve injury. [44]

The promising results of distraction osteogenesis notwithstanding, it must be kept in mind that in nonsyndromic PRS, the mandible grows very fast after birth and that catchup growth improves the airway passage (though the extent of such growth has been questioned by some [45] ). It has been argued that mandibular distraction should be reserved only for very severe isolated PRS cases and for syndromic PRS cases in which mandibular catchup growth does not occur. [46]


Many children with PRS have feeding difficulties. Because the body chooses breathing over eating, it is expected that a patient with airway difficulties will have feeding difficulties.

If the infant demonstrates catchup growth, feeding may be handled through special techniques, which consist of keeping the child's head more elevated and using special cleft nursing bottles (for more details, see Cleft Lip and Palate). If this is not satisfactory, gavage or feeding tubes can temporarily provide adequate nutrition. If feeding does not improve over a period of months, many infants require gastrostomy tubes. After the child develops the ability to feed orally, these tubes can be removed.

Cleft palate

In the United States, cleft palates are typically repaired in infants aged 10-18 months; however, if airway concerns are expressed, the palate surgery is often delayed until the child is aged approximately 18 months. The current belief is that as a general rule, the earlier the surgery is performed, the better the chance that the child will have completely normal palatal function and, consequently, normal speech. If a child has a tracheostomy tube in place, the palate repair can be performed at any time.


Micrognathia may be managed during the perinatal period if airway obstruction is significant and the family opts for distraction osteogenesis of the mandible. Otherwise, most centers wait until the infant achieves full growth of the facial bones before dealing with the functional and aesthetic abnormalities caused by micrognathia. In infants with retrognathia, surgery for the defective dental occlusion is rarely indicated. However, infants with either micrognathia or retrognathia may benefit from some sort of chin enhancement procedure for esthetic reasons.

An extensive description of treatment choices can be found in the review by St-Hilaire and Buchbinder. [47]

Because different types of obstruction, positioning, and traction devices are not always successful, they may not be recommended in most patients with syndromic PRS and Robin complexes. Thus, nasopharyngeal airway, tongue-lip adhesion, and other glossopexy procedures, as well as tracheostomy, are more common in syndromic patients with PRS than in those with isolated deformational PRS.

A multidisciplinary approach is always necessary in choosing the best treatment protocol for each patient. In patients with syndromic as well as nonsyndromic PRS, postponement of palatal closure may be beneficial for the final treatment outcome. One must carefully consider the individual timing and choice of procedures on the basis of a precise diagnosis and the particulars of the individual case, particularly because variability is great both between syndromes and within each clinical condition.

The major problem is airway compromise or obstruction. [48, 49] As mentioned previously (see Pathophysiology), different causes of airway obstruction are noted in PRS and Robin complexes. Therefore, one must accurately diagnose a baby with PRS as soon as possible in order to successfully manage this serious condition.

The vast majority of infants with nonsyndromic PRS and normal tongue size experience airway obstruction due to micrognathia of different degrees. If the baby is in the prone position (face down), gravity pulls the tongue forward and keeps the airway open. In severe cases, this may not be sufficient, and tongue-lip adhesion or glossopexy may be necessary.

Placement of a nasopharyngeal airway can help to avoid airway blockage. Consider it especially when hypotonia is also present (eg, deletion of chromosome band 22q11.2 syndrome), as well as in Robin complexes with neurologic symptoms. Some patients still require a tracheostomy to maintain an open airway.

In extensive studies dealing with airway problems in PRS, Shprintzen demonstrated that different mechanisms of obstruction can occur within the same syndrome and noted that in some patients, glossoptosis is frequently not the cause of the upper-airway obstruction. [29, 9]

Infants with PRS also have difficulties with feeding. A cleft palate prevents production of the negative pressure necessary for sucking during breastfeeding. In addition, because of an abnormal jaw position, a baby with a small mandible usually has difficulties contracting its orbicularis oris muscle and squeezing the mother's nipple. In cleft palate, a wide communication between the oral and nasal cavities creates a risk of choking and other feeding problems.

In deformational PRS, the mandible undergoes catchup growth (see the images below) that starts after birth when intrauterine constraint disappears and thus eases airway and feeding problems.

Child with nonsyndromic Pierre Robin sequence at a Child with nonsyndromic Pierre Robin sequence at age 4 years. Profile is almost normal because of catchup growth.
Child with nonsyndromic Pierre Robin sequence at a Child with nonsyndromic Pierre Robin sequence at age 4 years.

Usually, improvement is observed after the first 3 months. Even with partial catchup growth, a child's profile is almost normal at age 4-6 years without any treatment. When, as in some patients, the mandible still lags behind, orthodontic treatment of malocclusion may be required (see Surgical Care).

In PRS that is part of a syndrome or in Robin complexes, initial problems during the neonatal period and early stages of life are similar to those in deformational PRS.

Numerous syndromes occur with PRS. [26, 20] Because postnatal development is different for each of them, a precise diagnosis based on a genetic workup is essential.

A careful analysis of the type of airway obstruction is fundamental. Sher et al studied the mechanism of airway obstruction using flexible fiberoptic nasolaryngoscopy and developed a classification scheme based on four different processes. [22] Identifying a type of airway obstruction and understanding its mechanism is essential for correct management and treatment.

One thing is common for nondeformational PRS: No catchup growth of the mandible occurs. Because growth is altered in the mandible but may not be altered in other parts of the face, a dysmorphism of the features may progress and become more prominent with age if not treated.

Although treatment in the beginning of an infant's life is similar for all patients with Robin sequences, management of airway obstruction may require a more invasive approach in syndromic PRS and in Robin complexes.

Smith and Senders reviewed 60 patients with PRS. [50] One third of patients who failed positional therapy were temporarily stabilized with a nasopharyngeal airway or endotracheal intubation. The remaining two thirds of patients required a surgical procedure. By age 3 years, most patients were successfully taking an oral diet.


Surgical Care

An extensive description of treatment choices for PRS can be found in the review by St-Hilaire and Buchbinder. [47] Because of the different types of obstruction, positioning and traction devices are not always successful and may not be sufficient for airway management in patients with syndromic PRS and Robin complexes. Thus, nasopharyngeal airway, tongue-lip adhesion, and other glossopexy procedures, as well as tracheostomy, are more common than in patients with deformational PRS.

Most infants with nonsyndromic PRS and normal tongue size experience airway obstruction due to micrognathia of different degrees. If the baby is in the prone position, gravity pulls the tongue forward and keeps the airway open. Placement of a nasopharyngeal airway can help avoid airway blockage. Consider it especially when hypotonia is also present (eg, deletion of chromosome band 22q11.2 syndrome) as well as in Robin complexes with neurologic symptoms. Some cases require a tracheostomy to maintain an open airway in the baby.

One should pay special attention to the timing of cleft palate surgery. Usually, the palatal cleft is shaped like a wide U, with a wide and shallow palate. At the time when surgery is recommended for most children with cleft palate (9-18 months), the lower jaw is still small, and the child may not be gaining weight and thriving properly because of feeding and airway problems.

Furthermore, because of the micrognathic jaw and the normal tongue size, an infant may be using his or her cleft palate as an airway. Closing of the cleft may significantly compromise airway function; therefore, a multidisciplinary team of specialists should carefully evaluate the timing of cleft palate closure. Lehman reported a detailed retrospective analysis of cleft palate repair in 34 patients with Robin sequence. [51] Approximately 24% of patients suffered from complications related to airway management at the time of palatoplasty.

Mandibular distractional osteogenesis offers a definitive structural resolution of micrognathia. After the first cases of mandibular distractional osteogenesis were published, [52] numerous patients underwent this procedure; various modifications of the original technique are now used.

Cohen et al reported performing mandibular distractional osteogenesis in patients aged 14 weeks to 12 years with obstructive sleep apnea caused by craniofacial anomalies. [53] In all patients, significant relief from airway obstruction was observed.

Lam et al, in a retrospective study of 123 patients with severe micrognathia, found that mandibular distractional osteogenesis was highly successful in allowing patients to avoid tracheostomy. [54]

Flores et al, in an outcomes analysis of mandibular distractional osteogenesis versus tongue-lip adhesion in the treatment of nonsyndromic PRS, concluded that the former procedure yielded better outcomes with respect to oxygen saturation, apnea-hypopnea index, and incidence of tracheostomy. [55]

A systematic review by Zhang et al that addressed the literature directly comparing tongue-lip adhesion with mandibular distraction osteogenesis for Pierre Robin sequence found both procedures to be effective alternatives to tracheostomy when conservative management fails. [56]  In this review, mandibular distraction osteogenesis appeared to be be superior to tongue-lip adhesion with regard to long-term resolution of airway obstruction and avoidance of gastrostomy, but it was associated with significant complications.

A retrospective cohort study by Resnick et al found mandibular distraction osteogenesis to be more effective than tongue-lip adhesion for relieving obstructive apnea in infants with Robin sequence. [57]



Velopharyngeal dysfunction after palatoplasty is rather common. It is more common in patients with nonsyndromic PRS, when the cleft is usually U-shaped, large, and wide, than it is in patients with syndromic PRS. [58]



Consultation with a feeding specialist is advised. In many cases, when carefully instructed, a mother is able to manage bottle feeding while her baby is in a semisitting position. In patients with severe problems, gavage feeding may be necessary in the beginning of the baby's life.