Rotator Cuff Injury Clinical Presentation

Updated: Dec 14, 2022
  • Author: Gerard A Malanga, MD; Chief Editor: Craig C Young, MD  more...
  • Print


A detailed history is important to diagnose a rotator cuff injury and can help rule out other diagnoses in the differential (eg, referred pain from the cervical spine, more serious referred symptoms of cardiac origin) (see Differential Diagnoses and Other Problems to Be Considered).

First, determine the patient's chief symptom (eg, pain, weakness, instability, limited ROM).

Direct further questions at how and when the problem began.

Determine if the patient's symptoms are related to a specific injury or event or to a repetitive motion or are of a more insidious onset.

Activities and arm positions that increase or decrease symptoms are also helpful in diagnosing and guiding treatment. Previous episodes of similar symptoms may give a useful clue to the patient's present condition.

The presence of associated symptoms (eg, instability, weakness, swelling, numbness, loss of motion, catching or popping of the shoulder) also provides helpful information.

Ask if previous treatments have been tried, including the use of ice, heat, or medications (eg, acetaminophen, aspirin, nonsteroidal anti-inflammatory drugs [NSAIDs]).

Questions regarding previous medical treatment should include physical therapy, previous injections, and any surgical interventions.

A social history should include the patient's occupation and sport (including position) and level of athletic participation.

Pain, weakness, and loss of shoulder motion are common symptoms reported with rotator cuff pathology. Pain is often felt over the anterolateral part of the shoulder and is exacerbated by overhead activities. Night pain is a frequent symptom, especially when the patient lies on the affected shoulder.

Symptoms may be relatively acute, either following an injury or associated with a known repetitive overuse activity.

In elderly patients, symptoms are often insidious and with no specific injury. Repetitive motion can be associated with the symptoms.


Physical Examination

Approach the shoulder examination systematically in every patient with a suspected rotator cuff injuries. Expose the entire shoulder and perform inspection, palpation, ROM testing, motor strength testing, and special shoulder tests as clinically indicated.


Examination begins with patient observation during the history portion of evaluation. Carefully inspect the shoulder from the anterior, lateral, and posterior positions. Note any swelling, atrophy, asymmetry, or other findings.

Supraspinatus and infraspinatus atrophy can be observed in massive rotator cuff tears and in entrapments of the suprascapular nerve.

Scapular winging is rare in rotator cuff injuries; however, ST motion abnormalities are often present and should be addressed as part of the treatment plan.


Tenderness is often localized to the greater tuberosity and subacromial bursa.

The biceps tendon is palpated anteriorly in the bicipital groove and can become inflamed and painful in this condition.


Evaluate total active and passive ROM in all planes and scapulohumeral rhythm.

Maximal total elevation occurs in the plane of the scapula, which lies approximately 30° forward of the coronal plane.

Patients with rotator cuff tears tend to have a decrease in GH motion and an increase in ST motion during active shoulder elevation.

Decreased active elevation with normal passive ROM is usually observed in rotator cuff tears secondary to pain and weakness. When both active and passive ROM are decreased similarly, this usually suggests onset of adhesive capsulitis.

Assess internal rotation by having the patient reach an extended thumb up the spine. Patients with normal internal rotation reach the T5-T10 level. Note that overhand throwers often develop excess external rotation (up to 15-20°) on the throwing side, which is usually accompanied by loss of internal rotation on the same side.

Note any accompanying pain and specific pain location in ROM testing.

The impingement syndrome associated with rotator cuff injuries tends to cause pain with elevation ranging from 60-120° when the rotator cuff tendons are compressed against the anterior acromion and coracoacromial ligament.

Strength testing

Perform strength testing to isolate the relevant muscles individually.

The anterior cuff (subscapularis) can be assessed using the lift-off test, which is performed with the arm internally rotated behind the back.

Lifting the hand away from the back against resistance tests the strength of the subscapularis muscle.

The posterior cuff (infraspinatus and teres minor) is isolated best in 90° of forward flexion with the elbow flexed to 90°, testing external rotation.

Significant weakness in external rotation is observed in large rotator cuff tears.

Using either of 2 techniques described in the literature can test the supraspinatus muscle. Jobe and Moynes suggested that the best position for isolating the supraspinatus is with the elbow extended, the shoulder in full internal rotation, and the arm in the scapular plane (thumbs down position). [24]

In another report, Blackburn et al recommended testing in the prone position, with the elbow extended and the shoulder abducted to 100° and externally rotated while the patient lifts in abduction (thumbs up position). [17]

Malanga et al noted that although both techniques significantly activate the supraspinatus muscle, neither truly isolates this muscle for testing because other muscles are active in both positions. [25]

Dropping of the arm in either position usually indicates a significant supraspinatus muscle tear. More subtle weakness may represent early degeneration of the rotator cuff.

Testing of the scapula rotators (trapezius and serratus anterior) is also important. Serratus anterior weakness can be observed by having the patient lean against a wall. Winging of the scapula as the patient pushes against the wall indicates serratus anterior weakness.

Drop-arm test

Abduct the patient's shoulder to 90° and ask the patient to lower the arm slowly to the side in the same arc of movement.

Severe pain or inability of the patient to return the arm to the side slowly indicates a positive test result.

A positive result indicates a rotator cuff tear.

Neer impingement test

The shoulder is forcibly forward flexed and internally rotated, causing the greater tuberosity to jam against the anterior inferior surface of the acromion.

Pain reflects a positive test result and indicates an overuse injury to the supraspinatus muscle and possibly to the biceps tendon. See the image below.

Neer impingement test. The patient's arm is maxima Neer impingement test. The patient's arm is maximally elevated through forward flexion by the examiner, causing a jamming of the greater tuberosity against the anteroinferior acromion. Pain elicited with this maneuver indicates a positive test result for impingement.

Hawkins-Kennedy impingement test

Perform this test by forward flexing the shoulder and elbow to 90° and forcibly internally rotating the shoulder.

Pain indicates a positive test result and is due to supraspinatus tendon and greater tuberosity impingement under the coracoacromial ligament and coracoid process. See the image below.

Hawkins test. The examiner forward flexes the arms Hawkins test. The examiner forward flexes the arms to 90° and then forcibly internally rotates the shoulder. This movement pushes the supraspinatus tendon against the anterior surface of the coracoacromial ligament and coracoid process. Pain indicates a positive test result for supraspinatus tendonitis.

Apprehension test

Abduct the arm 90° and fully externally rotate, while placing anteriorly directed force on the posterior humeral head from behind.

The patient becomes apprehensive and resists further motion if chronic anterior instability is present.

Relocation test

Perform the apprehension test with the patient supine and the shoulder at the edge of the table.

In a positive relocation test result indicative of anterior instability, a posteriorly directed force on the proximal humerus causes resolution of the patient's apprehension and usually allows more external rotation of the humerus.