Mediterranean Spotted Fever (Boutonneuse Fever) Medication

Updated: Sep 15, 2021
  • Author: D Matthew Shoemaker, DO, FIDSA; Chief Editor: Michael Stuart Bronze, MD  more...
  • Print

Medication Summary

The goals of pharmacotherapy for boutonneuse fever (BF), also known as Mediterranean spotted fever (MSF), are to reduce morbidity, to prevent complications, and to eradicate the infection. Antibiotics are the mainstay of therapy for this disease, as for other rickettsial diseases. Patients with BF typically improve within 24 hours after initiation of therapy; a delay in response should cast doubt on the diagnosis.



Class Summary

Empiric antimicrobial therapy must be comprehensive and cover all likely pathogens in the context of this clinical setting. Tetracyclines, along with chloramphenicol and quinolones, may be considered first-line agents for this condition. Patients presenting with the benign form of BF usually receive antibiotics for 7 days, whereas those presenting with malignant BF are treated for 2 weeks. Clarithromycin and azithromycin have been used to treat children with BF.

Doxycycline (Vibramycin, Adoxa, Doryx, Monodox)

Doxycycline is a tetracycline with a broad spectrum of activity. It inhibits protein synthesis and thus bacterial growth by binding to 30S and possibly 50S ribosomal subunits of susceptible bacteria.

Ciprofloxacin (Cipro, Cipro XR)

Ciprofloxacin is a fluoroquinolone that is active against pseudomonads, streptococci, methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, and most gram-negative organisms but has no activity against anaerobes (eg, Bacteroides fragilis). It inhibits bacterial DNA synthesis and consequently growth. Treatment should be continued for at least 2 days (typically, 7-14 days) after signs and symptoms have disappeared.

Levofloxacin (Levaquin)

Levofloxacin is a second-generation quinolone that acts by interfering with DNA gyrase in bacterial cells. It is bactericidal and is highly active against gram-negative and gram-positive organisms, including Pseudomonas aeruginosa.


Chloramphenicol binds to 50S bacterial-ribosomal subunits and inhibits bacterial growth by inhibiting protein synthesis. It is effective against gram-negative and gram-positive bacteria.

Azithromycin (Zithromax, Zmax)

Azithromycin acts by binding to 50S ribosomal subunits of susceptible microorganisms and blocking dissociation of peptidyl tRNA from ribosomes, causing RNA-dependent protein synthesis to arrest. Nucleic acid synthesis is not affected.

In vitro incubation techniques demonstrate that azithromycin concentrates in phagocytes and fibroblasts. In vivo studies suggest that concentration in phagocytes may contribute to drug distribution to inflamed tissues. Plasma concentrations of azithromycin are very low, but tissue concentrations are much higher, giving this agent value in treating intracellular organisms. Azithromycin has a long tissue half-life.

Azithromycin is used to treat mild-to-moderate microbial infections, including uncomplicated skin and skin structure infections caused by S aureus, Streptococcus pyogenes, or Streptococcus agalactiae.

Clarithromycin (Biaxin, Biaxin XL)

Clarithromycin is a semisynthetic macrolide antibiotic that reversibly binds to the P site of 50S ribosomal subunits of susceptible organisms and may inhibit RNA-dependent protein synthesis by stimulating dissociation of peptidyl t-RNA from ribosomes, causing bacterial growth inhibition.

Rifampin (Rifadin)

Rifampin inhibits DNA-dependent bacterial (but not mammalian) RNA polymerase. Cross-resistance may occur.

Erythromycin (Ery-Tab, PCE, Erythrocin)

Erythromycin is a macrolide used for penicillin-allergic individuals. It inhibits bacterial growth, possibly by blocking dissociation of peptidyl transfer ribonucleic acid (t-RNA) from ribosomes, causing RNA-dependent protein synthesis to arrest. Erythromycin is administered for the treatment of staphylococcal and streptococcal infections.