Hemothorax Treatment & Management

Updated: Jul 13, 2020
  • Author: Mary C Mancini, MD, PhD, MMM; Chief Editor: Jeffrey C Milliken, MD  more...
  • Print

Approach Considerations

Blood in the pleural space can be associated with both hemorrhagic shock and respiratory compromise. It must be effectively evacuated to prevent complications such as fibrothorax and empyema.

If chest radiography shows that a hemothorax is large enough to obscure the costophrenic sulcus or is associated with a pneumothorax, it should be drained by tube thoracostomy. In cases of hemopneumothorax, placement of two chest tubes may be preferred, with the tube draining the pneumothorax placed in a more superior and anterior position.

Surgical exploration in cases of traumatic hemothorax should be performed in the following circumstances:

  • Evacuation of more than 1000 mL of blood immediately after tube thoracostomy; this is considered a massive hemothorax
  • Continued bleeding from the chest, defined as 150-200 mL/hr for 2-4 hours
  • Repeated blood transfusion is required to maintain hemodynamic stability

The late sequelae of hemothorax, including residual clot, infected collections, and trapped lung, require additional treatment and, most often, surgical intervention.

Retained clot (defined as an undrained collection of 500 mL or more as estimated by computed tomography [CT] or opacification of one third or more of the chest on chest radiography) is a well-known sequela after initial tube thoracostomy for hemothorax and should be evacuated early in the patient's hospital course, if the clinical condition permits. Early intervention in the case of a retained clot can be performed with thoracoscopy, provided that the operation is planned within 1 week of the bleeding episode.

Empyema usually develops from superimposed infection in a retained collection of blood. It requires surgical drainage and, possibly, decortication.

Fibrothorax is a late uncommon complication that can result from retained hemothorax. Thoracotomy and decortication are required for treatment.

Needle aspiration of a hemothorax is generally not indicated for definitive treatment. Even in cases of nontraumatic hemothorax that are not identified until diagnostic needle aspiration is performed, complete evacuation of these collections often requires treatment with tube thoracostomy, much as with hemothoraces resulting from other causes.

No data support routine antibiotic coverage of chest tubes in patients with hemothorax. Pain control may require intravenous opioid analgesic agents, intracostal nerve blocks around the chest tube site, or both. Low suction should be used on the chest tube.


Emergency Department Care

Initial treatment is directed toward cardiopulmonary stabilization and evacuation of the pleural blood collection. The patient should be sitting upright unless other injuries contraindicate this position. Administer oxygen and reassess airway, breathing, and circulation. Obtain an upright chest radiograph as quickly as possible.

If the patient is hypotensive, establish a large-bore intravenous line. Immediately commence appropriate fluid resuscitation (eg, with 20 mL/kg of lactated Ringer solution), including blood transfusion as necessary.

Evaluate for the possibility of tension pneumothorax. Needle decompression of a tension pneumothorax may be necessary.

The need for a chest tube in an asymptomatic patient is unclear, but if the patient has any respiratory distress, perform thoracostomy. If a conventional chest tube is not removing the blood collection, further steps may be necessary. Conventional treatment involves placement of a second thoracostomy tube. However, in many patients, this therapy is ineffective, necessitating further intervention.


Tube Thoracostomy

Tube thoracostomy drainage is the primary mode of treatment for hemothorax. In cases of trauma, patient assessment should be performed using the advanced trauma life support (ATLS) protocol before tube thoracostomy for hemothorax. (See the video below.)

Insertion of chest tube. Video courtesy of Therese Canares, MD, and Jonathan Valente, MD, Rhode Island Hospital, Brown University.

This procedure is relatively contraindicated when significant pleural adhesions are known to be present. Incomplete drainage or inability to effectively access the area is likely. Also, blunt division of pleural adhesions may cause additional bleeding and result in lung laceration. If evacuation of such collections is mandated clinically, thoracotomy with division of adhesions under direct vision is the safer approach.

Drainage in patients with coagulopathy

Although not contraindicated, drainage of hemothorax or any pleural effusion in an individual with a coagulopathy should be performed with great care. This group includes patients receiving anticoagulation therapy and those with significant liver disease or inherited coagulation factor deficiencies. Normalization of coagulation function by cessation of anticoagulants or correction of factor deficiencies using appropriate blood products, if necessary, should be initiated before a drainage procedure, if possible.

Needle aspiration should not be performed if clotting deficiencies are present. Rather, tube thoracostomy should be used, with the ability to visualize and control any chest wall bleeding that is encountered. If necessary, in individuals requiring long-term anticoagulant therapy, this medication can be resumed 8-12 hours after the thoracostomy has been completed.


A tube thoracostomy tray or kit should be readily available in every hospital emergency department. In adult patients, large-bore chest tubes (usually 36-42 French) should be used to achieve adequate drainage. Smaller-caliber tubes are more likely to occlude. In pediatric patients, chest tube size varies with the size of the child. In patients older than 12 years, the chest tube size used is usually the same as that for adults. In smaller children, a 24- to 34-French chest tube should be used, depending on the size of the child.


Although tube thoracostomy may be performed rapidly in some circumstances, sterile technique should always be employed. The insertion site should also be infiltrated with a local anesthetic.

On insertion, the thoracotomy tube is directed toward the costophrenic angle. Attention should be given to the location of insertion on the chest wall and the intrathoracic position of the tube as seen on the chest radiograph. For maximum drainage, thoracostomy tube placement for hemothorax should ideally be in the sixth or seventh intercostal space at the posterior axillary line. In the supine trauma victim, a common error in chest tube insertion is placement too anteriorly and superiorly, making complete drainage very unlikely.


After tube thoracostomy is performed, a repeat chest radiograph should always be obtained immediately. This helps identify chest tube position, helps determine completeness of the hemothorax evacuation, and may reveal other intrathoracic pathology previously obscured by the hemothorax.

A chest tube is usually put to water seal after the lung is fully reexpanded on radiography, fluid drainage is less than 50 mL in 24 hours, and no significant residual air leak is present. Situations may exist when a chest tube must be clamped. When no recurrence of air or fluid collection occurs on follow-up radiographic studies, the tube is then usually removed. A postremoval radiograph should be obtained.

If drainage is incomplete as visualized on the postthoracostomy chest radiograph, placement of a second drainage tube should be considered. Preferably, a video-assisted thoracoscopic surgery (VATS) procedure should be undertaken to evacuate the pleural space.

As many as 70-80% of individuals who sustain traumatic hemothorax are successfully treated by tube thoracostomy drainage and require no further therapy. Obtain at least one or two additional chest radiographs over a period of 1-2 weeks to confirm that no further intrathoracic collections or abnormalities are present.

The need for further follow-up chest radiographs may be dictated by the presence of other intrathoracic pathology and by additional symptoms and physical findings. Further treatment or follow-up is determined by the nature of any other injuries.


Video-Assisted Thoracoscopic Surgery

Video-assisted thoracoscopic surgery (VATS) is an alternative treatment that permits direct removal of clot and precise placement of chest tubes. Several centers have used this modality successfully to help identify and control the source of bleeding in a number of cases. [37] In comparison with thoracostomy, VATS is associated with fewer postoperative complications and shorter hospital stays.



Thoracotomy is the procedure of choice for surgical exploration of the chest when massive hemothorax or persistent bleeding is present. At the time of surgical exploration, the source of bleeding is controlled and the hemothorax is evacuated.

Surgical exploration of the chest may be required later in the course of the patient with hemothorax for evacuation of retained clot, drainage of empyema, or decortication. Cases with retained clot can often be treated successfully with a VATS procedure, especially if this is accomplished within 7 days of initial drainage of the hemothorax, but thoracotomy is usually required for adequate empyema drainage or decortication.

In nontraumatic cases of hemothorax resulting from surgically correctable intrathoracic pathology, correction of the underlying disease process and evacuation of the hemothorax should be undertaken. This may include stapling or resection of bullous disease, resection of cavitary disease, resection of necrotic lung tissue, sequestration of arteriovenous malformations, or resection or repair of vascular abnormalities such as aortic aneurysms. [26]

The decision to perform surgical exploration in cases of hemothorax from acute trauma is based on a number of factors, including the volume and persistence of blood loss, the overall hemodynamic state of the patient, and the amount of blood replacement required. (See Approach Considerations.)

Volume resuscitation should be performed according to ATLS protocol and should be continued en route to the operating room. Some forethought must be given to the availability of blood products if needed rapidly.

Anesthesia should be started rapidly, and all maneuvers should be employed to prevent aspiration. Although a double-lumen endotracheal tube is a very useful luxury to have in thoracic surgical cases, it is only absolutely necessary in a few cases and should not be considered unless it can be placed without delaying the operative procedure. Standard endotracheal intubation is adequate in most cases.

At least two secure large-bore intravenous lines must be established before surgery so that fluids and blood products can be administered rapidly if needed. An arterial line should be placed, but central intravenous access is not an absolute necessity, and surgery should not be delayed for such procedures. Pulse oximetry and the end-tidal carbon dioxide value should be monitored during the procedure.

If stability of the spine or other skeletal structures has not been fully determined before exploratory thoracotomy, every effort must be made to maintain proper support and stabilization of these structures when positioning the patient for thoracotomy.

In hemodynamically unstable patients, volume resuscitation must be maintained during the administration of any anesthetic agents because further instability and hypotension may ensue with anesthesia induction.

A dose of intravenous antibiotics should be administered before emergency exploration. Generally, a broad-spectrum cephalosporin is advisable. If thoracoabdominal injury is present and bowel injury is considered, coverage for gastrointestinal tract organisms should be added.

Conservation of patient body temperature in trauma surgery is extremely important. A variety of surface-warming devices are available and can be used to cover the patient, leaving only the operative field open. Warmers should also be used for intravenous crystalloid and blood products. Raising the ambient temperature in the operating room may be necessary. Maintenance of body temperature is extremely important to prevent complications such as coagulopathy and cardiac arrhythmias.

Intraoperative details

In the majority of trauma cases necessitating chest exploration, the bleeding source is from the chest wall, most commonly intercostal or internal mammary arteries. Once identified, these can be easily controlled with suture ligatures in most cases. After control of obvious bleeding and evacuation of clot and blood, a rapid but thorough exploration of the entire chest cavity should be performed.

Unstable rib fractures found at the time of surgery may require some debridement of sharp rib edges to prevent further injury to the lung or adjacent chest wall structures. At some centers, flail segments or extensive rib fractures are stabilized with wires or other types of support in an attempt to improve postoperative chest wall mechanics.

A thoracic surgeon should be present or immediately available at the time of emergency thoracic exploration because control of bleeding from difficult areas such as the hilum of the lung, the heart, or the great vessels may require a surgeon with expertise in that field.

Patients with injuries between the level of the nipples and the umbilicus may have injuries in both the chest and abdomen. If surgical exploration is mandated, proper positioning, prepping, and draping of these patients is wise so that access to both cavities is possible.

With the patient prepared in this manner, an unanticipated abdominal bleeding source beneath a ruptured diaphragm found at the time of chest exploration for hemothorax can be addressed more easily. The chest can be rapidly explored to help rule out additional intrathoracic sources, and attention can then be quickly turned to abdominal exploration. This preparation also allows ready thoracic access for clamping the thoracic aorta if hemodynamic instability arises from massive or uncontrolled hemorrhage at the time of abdominal exploration.

Diaphragmatic injuries may be closed from either the thorax or the abdomen. In the acute trauma setting, it is usually closed from the abdomen.

Adequate drainage of the chest after control of bleeding is very important. Because chest drainage tubes are placed under direct vision, the complication of retained hemothorax should occur with extreme infrequency. A minimum of two large-bore chest tubes should be used, with one positioned posteriorly and the other positioned anteriorly. Some surgeons prefer the addition of a right-angled chest tube positioned over the diaphragm.

Postoperative details

Ventilator management should progress according to the individual status of the patient. In cases where no other significant injury or disease process is present, weaning and extubation may proceed in a routine fashion. In more critically ill patients such as those with severe chest wall injuries or those requiring massive transfusion, ventilator management must be tailored to the condition of the patient.

After extubation, pulmonary toilet and adequate pain control are critical in preventing pulmonary complications such as atelectasis and pneumonia.

Chest tubes are maintained on underwater seal suction, and the volume of drainage and air leak are noted and recorded daily. If pulmonary injury is found or resection of lung tissue is required at the time of surgery, chest tubes are not removed until any air leak has disappeared and the lung is fully expanded as viewed on the chest radiograph. Drainage should be less than 100 mL in 24 hours before chest tube removal.

Antibiotic coverage begun preoperatively should be discontinued after 48 hours unless a definite reason exists for continuance.

Ventilator management should progress according to the individual status of the patient. In cases in which no other significant injury or disease process is present, weaning and extubation may proceed in a routine fashion. In more critically ill patients, such as those with severe chest wall injuries or those requiring massive transfusion, ventilator management must be tailored to the condition of the patient. After extubation, pulmonary toilet and adequate pain control are critical in preventing pulmonary complications such as atelectasis and pneumonia.


Management of Retained Clot

Approximately 20% of patients who initially have tube thoracostomy for drainage of hemothorax will have some amount of residual clot in the thoracic cavity. Some controversy exists regarding the management of retained clot after tube thoracostomy. Opinions range from conservative watchfulness to additional chest tube placement to surgical evacuation. Current opinion seems to favor some form of clot evacuation.

Many trauma centers are moving away from additional tube thoracostomy and, instead, advocating an early VATS procedure. This is usually performed within 7-8 days of the initial injury and, in some centers, is performed within 48-72 hours if a retained clot is identified within the thorax. [38, 39, 40, 41] However, VATS may be successful even in patients presenting late after injury. [42]

For VATS evacuation of the hemothorax or retained clot, one-lung ventilation is not required. A single-lumen tube can be used with directions to the anesthesiologist to decrease tidal volume or intermittently hold ventilation during the procedure. If cardiac, great vessel, or tracheobronchial injury is found, conversion to thoracotomy can be performed expeditiously.

The decision to perform early evacuation of retained hemothorax with VATS technology is likely to greatly diminish the number of patients who develop the sequelae of empyema and fibrothorax. Although it adds an operative procedure to the patient's management, this approach provides definitive treatment while avoiding the morbidity of a formal thoracotomy, and it shortens the total hospital stay when compared with more conservative management methods.

Patients undergoing surgical intervention for retained hemothorax in either an acute or late setting are monitored in the same fashion as any patient who has undergone VATS or thoracotomy. Generally, the chest tube is removed when drainage is less than 100-150 mL in 24 hours. A chest radiograph is often obtained after removal. Additional chest x-rays films are obtained as previously noted. Care of the thoracic incision(s) is the same as for any thoracic surgical case.

If conservative management of retained collections is chosen, serial chest x-rays should be obtained to assure that resolution is occurring. Once the pleural collection has resolved, a recurrence is unlikely and the patient may be discharged. Increase in size of the collection, development of an air-fluid level, or the new onset of symptoms (eg, fever, cough, dyspnea, pleuritic pain) may warrant CT evaluation and reassessment for surgical intervention.


Intrapleural Fibrinolysis

Intrapleural instillation of fibrinolytic agents is advocated in some centers for evacuation of residual hemothorax in cases in which initial tube thoracostomy drainage is inadequate. The proposed dose is 250,000 IU of streptokinase or 100,000 IU of urokinase in 100 mL of sterile saline. [43] Some centers prefer the use of tissue plasminogen activator (TPA). [44]

In a study of intrapleural fibrinolytic treatment of traumatic clotted hemothorax, daily instillations of fibrinolytic agents into the intrapleural the space for 2-15 days resulted in an overall success rate of 92%. [43] Nevertheless, the use of intrapleural instillation of fibrinolytic agents for the evacuation of hemothorax is not likely to become routine, because of the length of in-hospital time required for complete treatment and the risk of untoward effects.



Reexpansion pulmonary edema after evacuation of retained hemothorax is a rare reported complication. Associated factors in the development of this problem appear to be hypovolemia and the administration of large amounts of blood products and other volume expanders in the perioperative period.

Empyema can develop if a retained clot becomes secondarily infected. This can occur from associated pulmonary injuries or from external sources such as the penetrating object or missile that caused the original injury or the presence of a long-standing clotted thoracostomy tube.

Fibrothorax and trapped lung develop if fibrin deposition occurs within a clotted hemothorax. This can lead to persistent atelectasis and a reduction of pulmonary function. A decortication procedure may be necessary to permit lung expansion and reduce the risk of empyema.