History
Tricuspid atresia is usually detected in infancy because of presenting cyanosis, congestive heart failure, and growth retardation. Parents provide a history of poor skin coloration (ranging from pallor to frank cyanosis), inability to complete a feeding session, frequent pauses during feeding, and/or frank anorexia. As a result, the infant demonstrates poor growth patterns. Respiratory difficulties are often reported as nasal flaring or muscle retractions. (See Medscape article Pediatric Tricuspid Atresia.)
Bacterial endocarditis and brain abscess are common findings in patients with tricuspid atresia and should be considered in children with headaches, seizures, or neurologic deficits.
Physical Examination
On inspection, cyanosis is the most common clinical feature of this lesion. The degree of cyanosis depends on the degree of pulmonary blood flow. Infants with associated diminished pulmonary blood flow or infants who depend on a patent ductus arteriosus manifest pronounced cyanosis that worsens as the ductus begins to close. Patients with relatively normal or increased pulmonary blood flow manifest little cyanosis but more pronounced congestive heart failure. For related information, see Medscape's Heart Failure Resource Center.
Digital clubbing is common in infants older than 3 months. Jugular venous pulsations and distention are common.
The peripheral pulses and pulse volume may be decreased, normal, or increased. The left ventricular impulse is prominent because of volume overload. The apical impulse is hyperdynamic, with displacement to the left of the midclavicular line. A thrill may be felt at the left sternal border in patients with a restrictive ventricular septal defect or pulmonary valve stenosis. The liver may be large and pulsatile.
A single first heart sound that may be increased in intensity is usually present. The second heart sound may be single or normally split. The intensity of this sound varies, depending on associated transposition of the great vessels. In normally related great vessels, the second heart sound may be of normal intensity. In transposed great vessels, the second sound is diminished. Cardiac murmurs are present in 80% of patients with tricuspid atresia. A holosystolic murmur that may have a crescendo and decrescendo quality is present, signifying blood flow through the ventricular septal defect. A continuous murmur may be present. Systemic-to-pulmonary arterial collaterals or arterial-to-pulmonary arterial anastomoses surgically created to improve pulmonary blood flow may cause this finding. A murmur of mitral insufficiency may also be present.
-
Tricuspid Atresia. Fontan procedure: Illustration of the atrial-to-pulmonary artery anastomosis.
-
Tricuspid Atresia. Frontal chest radiograph in a child with tricuspid atresia and a nonrestrictive ventricular septal defect. There is pulmonary plethora. Note the prominent right atrium.
-
Tricuspid Atresia. Frontal chest radiograph in a child with tricuspid atresia and a nonrestrictive ventricular septal defect, mild pulmonary plethora and, atypically, a right aortic arch (arrow). Note enlarged right atrium and the typical rounded configuration of the left cardiac apex. In the absence of the right ventricle, the left ventricle becomes hypertrophied and dilated, causing the development of a more rounded cardiac apex.
-
Tricuspid Atresia. Frontal chest radiograph in an adult with untreated tricuspid atresia. Increased pulmonary blood flow through a nonrestrictive ventricular septal defect has been tolerated for years but has led to the development of pulmonary hypertension, as shown by the large proximal pulmonary arteries (arrows) and pruned distal pulmonary arteries. The development of pulmonary hypertension prevents conventional surgical treatment.
-
Tricuspid Atresia. Axial ECG-gated spin-echo MRI in an adult patient with tricuspid atresia shows the high signal from atrioventricular sulcus tissue (black arrow), replacing the tricuspid valve, and an enlarged right atrium. Note how the mitral valve orientation (white arrows) is abnormal. The right ventricular outflow chamber (R) is anterior.
-
Tricuspid Atresia. Axial ECG-gated spin-echo MRI (10 mm caudad to previous Image ) shows the high signal intensity from atrioventricular sulcus tissue and the restrictive ventricular septal defect (arrow) between the ventricle and the right ventricular outflow chamber. Note the dilated and rounded left ventricular cavity.
-
Tricuspid Atresia. Axial ECG-gated spin-echo MRI in an adolescent patient with tricuspid atresia with modified Fontan repair. The Fontan conduit (white arrow) runs from the right atrium (A) around the front of the heart towards the pulmonary artery. Note that the front of the heart is identified by the anterior atrioventricular sulcus tissue containing the signal void of the right coronary artery (black arrow).
-
Tricuspid Atresia. Axial ECG-gated spin-echo MRI in an adolescent patient with tricuspid atresia with modified Fontan repair (10 mm inferior to previous Image ). Thick atrioventricular sulcus tissue (arrow) is noted replacing the tricuspid valve. The ventricular septal defect has been repaired, and the ventricular septum is now intact.
-
Tricuspid Atresia. Apical 4-chamber 2-dimensional echocardiogram shows atrioventricular sulcus tissue (solid arrow) replacing the tricuspid valve in a patient with tricuspid atresia. Note the enlarged right atrium posterior to the abnormal atrioventricular sulcus tissue. A moderate-sized ventricular septal defect (open arrow) is noted between the ventricle (V) and outflow chamber (C).
-
Tricuspid Atresia. Fluoroscopic image shows a Park blade septostomy catheter with cutting blade extended in a patient with tricuspid atresia. The catheter has been passed through a restrictive atrial septal defect, which was resistant to balloon septostomy. The blade was used to make 2 cuts in the atrial septum, starting a tear, which then was completed using balloon septostomy.
-
Tricuspid Atresia. Frontal ventriculogram in a patient with tricuspid atresia shows the pulmonary arteries arising from a small right ventricular type outflow chamber (arrow). A restrictive ventricular septal defect and a large globular ventricle (V) are noted.
-
Tricuspid Atresia. Steep left anterior oblique ventriculogram in a patient with tricuspid atresia shows a restrictive ventricular septal defect (between arrows) and a typically large globular ventricle (V).
-
Tricuspid Atresia. Steep left anterior oblique ventriculogram in a patient with tricuspid atresia shows a larger nonrestrictive ventricular septal defect (white arrow). A typically large globular ventricle (V) is seen, which is receiving inflow from a single atrioventricular valve (mitral valve, black arrows). Note how the aorta and pulmonary arteries are superimposed, making interpretation of their attachments difficult. Angiography must be performed in multiple projections to fully define complex relationships accurately.
-
Tricuspid Atresia. Shallow right anterior oblique view from a ventriculogram in a patient with tricuspid atresia shows mitral regurgitation with contrast filling in both the left atrium (LA) and right atrium (RA), through the atrial septal defect. Contrast outlines the thick band of atrioventricular sulcus tissue (arrow), which is demonstrated well on cross-sectional imaging techniques.
-
Tricuspid Atresia. Right anterior oblique ventriculogram in a patient with tricuspid atresia shows simultaneous filling of the aorta (Ao) and pulmonary arteries (PA). Nonrestrictive ventricular septal defect was present, which necessitated pulmonary artery banding (arrow) to reduce pulmonary blood flow and protect against development of pulmonary hypertension before proceeding to a Fontan procedure.