Intraocular Lens (IOL) Dislocation Treatment & Management

Updated: May 12, 2021
  • Author: Lihteh Wu, MD; Chief Editor: John D Sheppard, Jr, MD, MMSc  more...
  • Print

Medical Care

Selection of treatment in the case of a decentered IOL should be based on the patient's symptoms, needs, and expectations.

Observation: In the absence of symptoms and no evidence of inflammatory sequelae, observation is an option. In the case of an ACIOL associated with a peaked or oval pupil, careful observation is warranted if there are no signs or symptoms of intraocular inflammation.

Miotics: If symptoms from a decentered PCIOL are infrequent and limited to evening, due to a dilated pupil, these patients may be treated conservatively by using a topical miotic such as pilocarpine 0.5-1% qhs. A trial of miotic agents may be warranted prior to removing or repositioning an implant.

Observation may be recommended in dislocated IOLs if the following conditions are met:

  • The IOL is not mobile.

  • There are no retinal complications.

  • The patient is satisfied with aphakic spectacle correction or contact lenses.


Surgical Care

When more severe and disabling symptoms or if inflammation is present with the potential for further complications in the future, treatment should include either repositioning, explanting, or exchanging the decentered IOL. [12] Selection of treatment is based on the patient's symptoms, visual needs, and expectations, and an assessment of which option is likely to provide the best long-term benefit with the least risk.

IOL reposition: An IOL may become decentered due to either insufficient zonular support or to irregular fibrosis of the posterior capsule. In the case of inadequate support, early in the postoperative period the surgeon may attempt to rotate the IOL surgically where there is clinical evidence of sufficient capsule and zonules to support the implant. A helpful maneuver is the bounce test where the optic is pushed gently toward each haptic to ensure spontaneous recentration.

IOL reposition with McCannel sutures: In some cases, repositioning may be supplemented by the use of trans-iris IOL fixation (McCannel) suture.

IOL explantation: Certain circumstances warrant removal of an IOL without secondary IOL implantation. This is determined on an individual basis and taking into account the patient's expectation.

IOL exchange: The most common indications for removal or exchange of a modern PCL are wrong IOL power and malposition. Deformation of the implant due to irregular capsular fibrosis may make simple rotation insufficient to properly center the IOL. The IOL may be exchanged for an ACIOL, a sulcus-fixated IOL with or without McCannel sutures, a transsclerally sutured PCIOL, or a posterior iris-claw IOL. [13]

To determine whether the risk-to-benefit ratio favors IOL exchange over observation, the surgeon should consider the following:

  • Severity, duration, and chronology of the problem
  • Response to nonsurgical treatment
  • Natural history of a specific IOL
  • Likelihood that surgical removal would provide substantial relief or benefits
  • Ease of surgical removal and potential for aggravating or creating additional complications
  • Status of the other eye
  • Patient and family expectations and visual needs
  • Life expectancy and overall health of the patient

Several indications for surgical intervention exist for a dislocated IOL. If the patient is not satisfied or cannot tolerate aphakic spectacle correction or contact lenses or if there is concomitant retinal pathology, such as a retinal detachment, surgery must be considered.

Several surgical options are available. These options include removal, exchange, or repositioning of the IOL. A multitude of techniques has been described on how to grasp, suture, and place the IOL. Repositioning of the IOL into the ciliary sulcus or over capsular remnants with less than a total of 6 clock hours of inferior capsular support is not a stable situation, as many of those repositioned IOLs will end up dislocating again. Transscleral suturing or IOL exchange (removal of the dislocated IOL and placement of a flexible open loop ACIOL) is recommended in these cases.

In 1996, Kelman proposed a technique called posterior-assisted levitation, in which nuclear fragments or dislocated IOLs into the anterior vitreous are retrieved through a pars plana sclerotomy and the insertion of a cyclodialysis spatula, a needle, or a viscosurgical device. However, this maneuver can be complicated with retinal detachment or cystoid macular edema and should not be performed at all.

If transscleral suturing of the IOL is planned, modifications to the usual placement of the sclerotomies are made. Two triangular scleral flaps are made 180 degrees apart in the horizontal meridian. Then, two sclerotomies are made 1-1.5 mm posterior to the limbus under the flaps. The infusion cannula is sutured to the usual position. A complete vitrectomy is performed, paying close attention to removing all vitreous and capsular attachments to the IOL, making it freely mobile. The posterior hyaloid, if still attached, is peeled. This allows the IOL to gently fall over the posterior pole of the eye.

If the IOL does not have positioning holes, the edge of the IOL is elevated with a lighted vitreoretinal pick or hook. If positioning holes are present, the IOL may be engaged through them by the pick or hook. The IOL is elevated into the midvitreous cavity, and the optic is grasped with serrated jaw foreign body forceps or diamond-coated forceps. The haptics should not be grasped, or they will be bent.

Aspiration through the silicone soft tipped cannula also has been used in the retrieval and manipulation of the IOL, but this technique may result in inadvertent vitreoretinal traction.

Silicone plate lenses are difficult to manipulate, and, in certain cases, standard techniques will not suffice. The endocryoprobe has been used to engage the IOL, but diamond-coated forceps are much safer. It is recommended that the gas pressure be lowered to 525 psi to avoid freezing the entire shaft. Another problem is that transscleral suturing is not an option because cheese wiring through the silicone will occur.

Liquid perfluorocarbons, such as Perflubron, can be used to float the IOL to the pupillary plane.

Once the IOL is engaged and elevated, it is brought to the posterior chamber. One haptic may be brought in front of the iris. The other haptic may be positioned in the sulcus. Using a Sinskey hook either through a limbal stab incision or through the sclerotomy, the IOL is rotated into place. If more than a total of 6 clock hours of capsular support are present inferiorly, one may elect to reposition the IOL into the sulcus without suturing it.

If there is not enough capsular support, either transscleral sutures or iris sutures are necessary. Several techniques have been described, as follows:

  • If the IOL has positioning holes, the haptics are rotated until they are in the vertical meridian. Single armed 9-0 Prolene sutures are grasped with intraocular forceps and introduced through the sclerotomies. They are passed through the positioning holes from posterior to anterior. The sutures are tied to the sclerotomies under the scleral flaps.
  • With the intraocular snare, one of the haptics may be looped, and, at the same time, a 7-0 polypropylene suture can be tied to it.
  • Another option is to temporarily externalize the haptics through the sclerotomies so that they can be tied with 10-0 Prolene sutures. This technique may cause peripheral retina breaks or bleeding. The IOL is repositioned into the sulcus, and the sutures are secured to the sclerotomy.
  • Needle-guided techniques also have been described where a 9-0 or 10-0 polypropylene suture may be threaded retrograde up the bore of a five-eighths-inch 25-gauge needle. The end of the suture that is not threaded is retrieved through the hub of the needle. This results in a suture loop. The needle with the suture is inserted through the base of the scleral flap. As the IOL is being grasped by forceps, the haptic is manipulated into the loop; then, the suture is tied under the scleral flaps. There is some evidence that over the years, the 10-0 polypropylene suture may break. The incidence has been reported to be as low as 0.5% to as high as 26.2%. [14, 15]

Under certain situations, an IOL must be exchanged. For instance, if the dislocated IOL is damaged (ie, broken haptic), it must be removed. The damaged IOL may be removed through the pars plana or through a limbal incision at the surgeon's discretion. Pars plana removal increases the risk of retinal detachment and severe choroidal bleeding. Options are as follows:

  • The surgeon has the choice of suturing a posterior IOL or inserting an ACIOL. Modern flexible open loop ACIOLs do not appear to result in the complications seen with older types (ie, corneal decompensation, uveitis-glaucoma-hyphema syndrome).
  • Another option is to manipulate the dislocated IOL into the anterior chamber and leave it there. Potential drawbacks of this option are endothelial cell and trabecular meshwork damage. This technique works well with 3-piece polymethyl methacrylate (PMMA) IOLS but requires a peripheral iridectomy to prevent pupillary block.

Perfluorocarbon liquids are very useful if a retinal detachment is also present. The perfluorocarbon liquid bubble displaces the subretinal fluid through the retinal breaks reattaching the retina and, at the same time, serves as a cushion between the IOL and the retina. Thus, the retina is protected from potential damage from IOL impact during surgical manipulation. If a silicone plate lens is dislocated, special care with the use of perfluorocarbon liquids is necessary. It has been reported that these lenses often "skate or glide" on the bubble across the retina. In addition, perfluorocarbon liquids make the grasping of the IOL somewhat more difficult by making the IOL more slippery. If the retina is not detached, the use of perfluorocarbon liquids probably is not necessary.

On certain cases, an ACIOL is present in addition to the dislocated IOL. Surgical management of these cases is made more difficult by the presence of the ACIOL, especially if a concomitant retinal detachment is present. The vitreoretinal surgeon has several options, as follows:

  • The surgeon may opt to remove the ACIOL, reposition the dislocated IOL, or suture the dislocated IOL.
  • Another option is to leave the ACIOL and remove the dislocated IOL. The dislocated IOL may be removed via the pars plana or through a limbal incision. If pars plana removal is entertained, a 7-mm partial-thickness scleral groove is created 3 mm posterior and parallel to the superior limbus. This groove should be contiguous with one of the superior sclerotomies. 8-0 silk sutures should be preplaced through the lips of the scleral groove. Once the IOL is ready to be extracted, the microvitreoretinal (MVR) blade is used to extend the sclerotomy into the scleral groove to make it full thickness. After the IOL is removed, the preplaced sutures are tied. This area is inspected by indirect ophthalmoscopy. If needed, retinopexy is applied.
  • If extraction through a limbal incision is planned, the ACIOL must be removed first. Then, the dislocated IOL is brought to the anterior chamber and removed through the limbal wound. The ACIOL is reinserted. The limbal wound is closed with 10-0 nylon sutures. The sclerotomies are closed in the usual fashion.

Although dislocated foldable IOLs were traditionally treated with removal of the lens and exchange to a PMMA IOL, one report demonstrates the feasibility of using existing surgical techniques to reposition the dislocated foldable IOLs.

A sutureless technique has recently been described. [16] A 27-gauge needle is passed through the ciliary sulcus, allowing externalization of the IOL haptics. A lamellar scleral dissection is performed, and the haptics are then fixed into this scleral tunnel. Using this technique, the authors report minimal tilt and other complications.

An ab externo scleral fixation of an Akreos AO60 or an ALCON CZ70BD with Gore-Tex suture has been described. [17] Four sclerotomies are made with a microvitreoretinal blade 2 mm from the limbus. CV-8 Gore-Tex suture is passed through the eyelets of the IOL. Each suture end is passed into the anterior chamber through a main incision and externalized through the sclerotomy sites using intraocular forceps in a hand-to-hand technique. The IOL is then placed into the anterior chamber. The sutures are tied, the knots trimmed, and rotated into the sclerotomy.



A vitreoretinal specialist should be consulted whenever this complication occurs.



A systematic review of the literature up to 2019 that compared different techniques of IOL scleral fixation, reported that scleral fixated IOL that used tissue adhesive glue had the lowest loss of corneal endothelial cells and fewest IOL related complications. In contrast, scleral fixated IOLs that were sutured had the highest rate of IOL related complications. Sutureless and glueless scleral fixated IOLs had the highest corneal endothelial cell loss. [18]